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ABSTRACT: In the present work, we consider the function representing a rapidly convergent power series
which extends the well-known confluent hypergeometric function 1F; [z] as well as the integral function

f@=3na 2.

We study certain harmonic univalent mappings involving the £-Hypergeometric functions.

We establish the characteristics connected with harmonic mappings and mention their sufficient conditions.
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I. INTRODUCTION

Let C be a complex plan and D be a simply connected
domain on it. Let u and v be real-valued harmonic
functions in ®, then we call f=u+iv is a complex
valued harmonic function in D. If f=h+g, then
lg'(2)| < |h'(2)| is the sufficient condition for f to be
locally univalent and sense-preserving in ®. Let
A(D;(0)) be the class of analytic functions in the open
unit disk D, (0) = {z € C: |z|] < 1}. Let C be the class of
all functions f € A(D,(0)) which are normalized by
£(0) =0 and £'(0) = 1 and have the form

f(2) = z+ %5, anz", z€Dy(0) (1)
In 1984, Clunie and Sheil-small [1] introduced a class
SH of complex-valued harmonic maps f which are
univalent and sense-preserving in C. So, for f =h + g, it
can be expressed in the analytic functions h and g as

h(z)=z+ Z a,z",
=

prym
9(2) = Tny Puz™ Bl <1 2)
Let § be the class of normalized analytic univalent
functions. Then SH reduces to the class S if the co-
analytic part of its member is zero. Therefore, the
function f(z) ifor the class SH may be written as
(1).

Also, let NH be the subclass of SH which
consists functions of the form f=h+g, such that

2
9@ == Il
n=1

h(z) =z — Y=y lan|z"™ |B1] < 1 (©)
Let H(a,b),(a=0,0<b<1) be the subclass of
harmonic functions of the form Egn. (2) which

satisfies [2],

Re{(h'(z) +9'(2)) + 3az(h"(2) + 9"(2)) (@)

+az?(h"(z) + g"(2))} > b.

Also, in [2] authors defined, the class NH(a, b) by
NH(a,b) = NH nH (a,b).
Hypergeometric functions on Harmonic functions plays
an important part in geometric function theory. In 2004,
Ahuja and Silverman [3] studied the relationship
between distinct hypergeometric functions and harmonic
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univalent functions. Later, in 2007, Ahuja [4] further
investigated by applying certain planar harmonic
convolution operators on various subclasses, the
connections between the theory of harmonic mappings
in the plane and hypergeometric functions. There are
many other important studies in this connection [3-11,
12].
In this paper, we study harmonic univalent functions
associated with £-Hypergeometric function (in short, £-H
function). For z € C, the £-H function is defined as

o; Z ™ (@)n i
H [B: (v:6) ] = Ln=0 ), 0 ®)
where £,a € C with Re(£) =0, B,y € C\{0,—1,—-2,---}
and (c)n=%. If we put £=0 in (5), then £-H
function turns to well known confluent hypergeometric
function,

a, Z o, Z

gy 1= Alg ©)
The €-H function (5) recently studied by Chudasama
and Dave [10].

Next, let H(z) = H,(z) + H,(2), in which

_ aq; z
Hi(z) =zH [31: (c:t) -
o0 (@1)n-1 n
=z+ - D Z
Ln=2 (=D BIn-1 () 2D
oy z
%Z(Z)—H[BZ:(C:[Z) ]_1
o0 (a)n n
= o —2 Tz 8
Zn=1 n(B)n () 2" ®)

We organize the paper in the following way. In Section
Il, we provide some definitions and lemmas which are
useful in our main results. In section Ill, we derive the
necessary and sufficient conditions for harmonic
functions connected with #-H functions to be in the
classes H(a,b) and in NH (a, b).

Il. PRELIMINARIES

In this section we present few definitions and lemmas
which are useful in the sequel.
Lemma 1. [10] The #-Hypergoemetric function is an

entire function of z, provided Re(¥) =0 and Re (ct’ -
fy1)>o0.
2
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Definition 2. [10] Let f(2)
k e Nu {0} andp € C. Define

> @@k +p -1k EN,
n=1

f(2),k =0,
where D is the Euler differential operator given by
d

D=z—.
dz
From the above definition it can be seen that the £-H
function (5) satisfies the differential equation
(A2YD+b—1)Dw—z(D+a)w =0 9)
for zza€C and ¢,b € C\{0,—1,—-2,--}and £=0,1,2,--.
It was established in [7].
Definition 3. [10] The #-H exponential function is
defined as
el(z2)=H [_: Z] =>n = (10)
H —; (1- [) n=0 (n!)t’n+1’
for all z € C and Re(?) = 0.
Lemma 4. [2] Let h and g be given by (2) such that
f = h + g and the following condition holds:
Yot [+ an(n? = D(laa| + 18D+ b <1, (11)
where 0<b<1, a;,=1,a=0 then f is harmonic
univalent, sense-preserving in D, (0) and f € #(a, b).
Lemma 5. [2] Let f = h+ g be such that h iand g are
given iby (2). Then f € NH(a, b) if and only if
Yh-2 nll+am?—1)]|ayl
+Xn=1 n+a(®m® —Dn]|f,| +b <1,
inwhich0<bh<1, a;=1a=0.

lll. MAIN RESULTS

Theorem 6. If a; < b;,c; =4 and ?; > 1, for i = 1,2. Then
the sufficient conditions for H =H, +H, to be
harmonic univalent and sense-preserving in D, (0) and
H(z) € H(a,b) are that

= Xn=1 anz", z € C\{0},

DD f(2) =

(12)

(;/12 ih—l) Y1(Y22+71)20 (13)
! Lt [n Yi(r1+1)
Y2 " 72 Vioova ’

wherea>0and0<b < 1.
Proof. Let H(z) = H;(2) + H,(z). Then

n

(@1)n-1 z
H@ =z + ), Br (r) 20D (= 1)

n=2
(@)n g
7 .
= By, ™
Firstly, we prove H is locally univalent and sense-
preserving in D, (0). For this, consider

, _ n(ay)p-1 z"t
|Hi(z)| =1 +nzz B () 1(n D(n—1)!
(@ )n-1 |z|*t

n= 2 (B1)n- 1()/1) (n V-1t

- n
_I_Z(y)1(n 1)°

n=2

Sincey; =4 >1and/, =1, it follows that

o < "
foralln € N and
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n n

(©Ony clctDc+2)—(ctn—2)
1
< c(c+1)n3
for n € N\{1,2}
So,
#L @ =1 i S
Al >1-—
! — Y 1n-1
n=2
_, 2 1 1
Y1 "N ( + )"
1+3
1— 2)’1
4
_Yi—3n-1
¥

On the other hand, by similar arguments, we have

! R o 1) (a)n |Z|n_1
2@ = Zam (8 )n(yz),’?" (n-1)!

= Zn 1 s )7!;271

< Ve -
< Y= (yz)n
1

= X1y gD

1 v 1 _rtl
< Y2 2n=0 2 +1)" sz ’
From the condition (13), w have
|H'1 (D] > |H'2(2)].
Now to prove # is univalent in D, (0), we suppose
71,2, € D;(0) such that z; # z,. As D,(0) is convex and
simply connected, we have z(t)=(1-1t)z +tz, €
D, (0),where 0 <t < 1. Therefore, we have

1
H(zy) - H(z,) = f [(22 — 20) ] (2(0))
0
+(z, — Zl)}[z’(z(t))]dt
such that

Re {7{(21)_7{(22 )}

2272,

= [ Re [7{1'(2(1:)) + &) 3 (Z(t))] dt (15)
> [ [Re (3] (2(t)) + |73 (2()) |]d¢

where
Re (31 (z(1))) + |H;(2(6))]

N (@)1 |z
= " Bon- L)Y (= 1)!
~ (@), 2"

L (B)n(r)" (= 1)!

21-), (mn(" ) (ni"”‘

n2 n=1

>1-

o

=1 _Z Gns _Z N

_Y12—3Y1—1_

Thus, by (15), we get H(z;) # H(z;) and hence H is
univalent in D, (0). Finally, we prove € H(a, b).
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In order to prove this, it is suffices to prove condition

(11). i.e.,

oo 2 (@)n-1 1
Yooan[l+ a(n 1)][(15’1)71 1(y1)€1(” D (n—1)! (16)
(a2)n
F Bon w<2-b
Under the given conditions, we have
n3 n?
<
Y1)n-1 Y11+ Dns
n(n —3) 3n

Y11+ Dns vi(r1+ Dns
1 3

+
Y+ DMy + D

forn € N\{1,2,3,4},

n*>  nn-1) n
(YZ)n B (YZ)n (YZ)n
1 1

+
V22 + D32y (y, + D2
forn € N\{1,2},

n

< forn € N\{1, 2},
Y1(Y1+1)" 3 .23

forn € N.

Y1)n-1

n <—
and W2)n — Vz(V2+1)n 1
Now,

(@)n-1 1

1 21
nl = Dl e ey

(a)n 1
R % —
B2 nl

= Yes (1—a)n

+Yr_, an®

Yn=1

(@)n-1 1
(Bn-1 )20 (n-1!
(@1)n-1 1
Bn-1 DA (-1

+Ye ., (1- a)nMi

(Bn ()" n!
+Yr_, an®
3

_ @)y 1
(Bn(r) 2" 1!

<U-@ gy —+aliag,—

+(1-a)¥noy ﬁ +a Y= &

- (1-0a) [1 +y31] +(1-a)Yns ﬁ

8 27 256
ta|l+—+
Y1 V1(V1+1) V1(V1+1)(Y1+2)

+a2n 5( ) +(1 a)Zn 1(y)
1
Vz Vz(V2+1)

27 256
=1 o
+ ta Y1 + ¥1(r1+1) + Y1+ 1)(r1+2)

[1+3a] Zn o 1

(621 +1)"

consider

taZis g

(az)n i

L (B!

Theorem 7. Let a>0, 0<b <1, a; <b;c; =24 and
t;,=1, for i=12 and a,< ﬂzyzfz. Then F,(2) €
NH((a,b) if and only if (13) and (14) holds.

Proof. By definition, it is clear that F,(z) € NH. Now
suppose Eqgns. (13) and (14) holds. Then, by Theorem 3
Fi(2) € H(a,b).

Hence, F,(z) € NH(a,b).

Conversely, suppose

Fi(2) € NH(a,b).

Since NH(a,b) € H(a,b), F,(z) € H(a,b). So, F,
satisfies the inequalities (13) and (16) by Theorem 3
and hence (14) holds.

Theorem 8. Let a >0, 0<b <1, a; <b;c; =24 and
£, =1, for i=1,2 and a, <ﬂ2y2’2. Then the necessary
and sufficient condition for f x (H; + H,) € NH(a,b),
where f € NH (a, b) is that

+1 +1
nr ot

Vi Y2
Proof. Let f =h+g € NH(a,b), in which h and g
defined by (2).
Then
[+ Hy) (2) = h(2) x Hy(2) + g(2) * H,(2)

_ _ (@1)n-1 z"
n=2 (B1)n- 1()/1) 1(n V(-1
v (@),

L (B)n(r) m!
By Lemma 2,
f* (H, +H,) € NH(a,b) iff

Z n+am?— 1] [— =t &n

Bna )20 (n = 1!
%b_n] S
(Bo)n(y)2 "~

By Lemma 2,

Z [n+a(n? — nj(a, + by) + b < 2.

r'll':hlat is,

n[1+ a(n? - 1)]a,

n=2

+Z n[1+an?-1)]b, <1-b,

1+a 3 1
[ ]Zn 0(y+1)n_a nn n[l1+an?-1]a, <1-b and
_1+ +alty—22 4 256 n[l1+an®-1)]b,<1-5b
Y1 it va(ra+ D1 +2) 1—5b
[1+3a] [1+y1] n < —n[l Fa(mz=1)] and
1+a] [1+7, 1 1-»b
— — < - >
[ ][ ] [1 Y2 bn—n[l_l_a(nz_l)]’(n—l)
This completes the proof.
Define a function,
Fi(2) = 22— H,(2) — T, (2)
o (@)n-1 z"
- z _
S Bty P (= D
Vidyasagar |International Journal on Emerging Technologies 11(2): 75-80(2020) 77



Now, from Eqgn. (17), we have

2 _ ( l)n 1 an
nZl n[ 1+a(n 1)][(ﬂ1)n ™ 1(n Dn—1)!
(@ b,

B ()" !

Z(

l)n 1 1
(ﬂl)n LoD (n=1)!

1
+ 2
Z - (ﬁz)n(m"”‘n'

- (@), 1
=(1-b L LI
( )[,Zl By 1!
(az)n 1
+ - -
(ﬂz)n(mi?"n!]

S(l—b)[

2" e
ZIW+,Z@2)"2"]
1

1
=]

- 1
=t=h [Z AN Z (mn]

- 1
== b)[nZl iy + D1

[ee)

1
+E —
Y2 (Y2 + 1)"_1]
n=1

+1 +1
S(l—b)[hz +Y22 ]
Y Y-

2

1
This completes the proof.
Theorem 9. Leta; <b,c;=4and{; >1, fori=1,2

and a2<ﬂ2y2’2. Then the necessary and sufficient
condition for a function

Fa(2) = _LZH[Z;:()G:{H) t] d

z
ay; t
[ e ] -1]
_L [ 25 (V2:12)
to be in H(a, b) is that
Y1 +1 Yo+ 1
3 +

1+ 3a
[ It 1z v ]
1 1
t+al—+—[<1-b,
Y1 Y2

wherea>0and0<b < 1.
Proof. From Lemma 2, the function

o

— (al)n 1 z"
T = +nzz Bn-1(1),- 1(n Dm—-1Din
N (a2)n-1 zn
n=2 (B)n- 1()/z)€2(" 2 (n—1Dln
isinH(a,b) if
N (@1)n-1
[1+ am?-1)][ -
Z " o Bna )P (= Din
(a2)n-1
—b.
B 7)™ - D
So, consider
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(@)n-1

1+a(n?®-1
nzzz Hratr )][(ﬂl)n 1)y 1(n Y- 1)!
(@2)n-1

+
BInr ()20 P (n —1)!]

N ((11)71 - (az)n
- +
nZ1 (ﬂl)n()ﬁ)fllnn! HZI (ﬂZ)n()/z)flznn!
(al)n (az)n

+ T , @
a"ZI " (ﬂl)"(h)fln a; " (ﬂz)n()/z)ffnn!

)n N (@)n
+2 N —+2 —
Z (ﬂl)n(m az "(ﬂz)n(yz)ff"n'

n=1 n=1 n=1 n=1
ay
a a
1 (YI)n - (YZ)n
n=1
(1+2)Z ! +(1+2)Z
= a a
- (YI)n ( Z)n
n=1 1
NN
a a
- (YI)n (YZ)n
n=1 =1
+1 +1 1 1
5U+m¢q2+n2]+a—+—
" Y2 Y1 V2

o

1 ¢ 1
[ — y1(ys + )2 — V(2 + " 2]
n=2 n=2

[y, +1 + 1]
<[1+2a) |+ 22
| " Y2
2y +1 2y, +1
+a 3 3
161 Y2
[y, +1 + 1] 1 1
<[+3a B+ 2 g4 =
| " V2o Y1 V2
<1-b.

Theorem 9. Let a;<b,c;=4and £, =1, fori=1,2

and a2<ﬂ2y2. Then the necessary and sufficient
condition for

F3(2) = _LZ [gi:(h 41) ]dt

-J, 115 e |-
_L [H [ﬂzi(YZ:fz) 1)de
to be in H(a, b) is that
Vz]

4a+y;+1
1+0;
a
+—<1-b,
Y2

1

wherea>0and0<b < 1.
Proof. From Lemma 5, the function

los | (a+1Dqy

Fy(z) =z -
HH = [ﬂm”(ﬂlﬂ)n L1+ D0

n 0
Z

% (n— 1)!n]
isin H'(a, b) if

Z (a2)n-1 zn
(BIn-1 ()2 (= Din
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[ee)

Z [l + a@?® — 1]

n=2
| | (a1 + Dy 2 1
X7 402 (n— 1)In
Byt (Br+ Dy + D5 :
(@2)n-1 1 ]<1-b.

Bn1(r) 20V (n=Dln
So, consider

[1+a(n?-1)]
n=2

[ || (1 +1)n— 1
Buvyt (By + Dnea(ry + DEG™P (0= 1)!
(a2)n-1 1 |
Bn-1(r2),2 ;P (n= 1!
= i | | (01 + 1)y 1
S By (B + Dnsa iy + D2 (0= 1!

[ee)

X

(@2)n-1 1
n=2 (B2)n- 1()/z)€2(" V-1t

+az la,| (n —1D(a; + Dy 1
f £ - _
L By By + Dy (g + 1)ECP (= 1)

N (az)n-1 1
+ (n?— _
anZz " (ﬂz)n L)Y (n = 1!
Zi | | (a; + 1D, 1

S8 Byt (By + Dy + 1" (14 D!

e i el (@t 1
£
n=0 ﬂﬂ/l B+ Dn(ri + 1), ol

+3az la;| (a; + 1), l
= B1y)* By + Dn(yy + 1" 1!

o

+a nz (az)n . 1]

n=1 (ﬂz)n()/Z) 2
i (@)n 1

S Bon (Bar)" 1!
+(1+a) (@2)n 1

Lo (B)n(r)i !

o

< 1 a i
A PR
he 0()/1+1) w n

n=1

(yy + 1)"1"

o

S

n=1

o

MZ i Z A

n=1 n=1 n

+(1+a) Z =
Y2

_1 [”i 1 L i 1
< |t )
)/11 n=1 (YI + l)n )/11 =1 (YI + l)n
+3a§: Lo i n oL, i 1
— —_— a e a
)/f1 n=1 (YI + l)n =1 (YZ)n =1 (YZ)n
+(1+ )i !
a
n=1 (YZ)n
_1 1+§: 1 L i 1
a yfl L+ yfl L (rn+ "
+3a§: ! +§: 1
2a al=
yfl ~ .+ )" V2 Y2 (2 + 1) 2

- 1
NEPEYS S N
—~ Y2y + D1

1+y, a 3a 1 1+vy,
1+4, 1+4, + 1+4, ta|—+ 2
" 1 1 Y2 Y2
Vz]
4a+y; +1 12 a
S T to-
* V2
1
<1-b

This completes the proof.
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